3.781 \(\int \frac{1}{x (a+b x^2)^2 (c+d x^2)^{5/2}} \, dx\)

Optimal. Leaf size=225 \[ \frac{d \left (-2 a^2 d^2+6 a b c d+b^2 c^2\right )}{2 a c^2 \sqrt{c+d x^2} (b c-a d)^3}+\frac{b^{5/2} (2 b c-7 a d) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{2 a^2 (b c-a d)^{7/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a^2 c^{5/2}}+\frac{b}{2 a \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2} (b c-a d)}+\frac{d (2 a d+3 b c)}{6 a c \left (c+d x^2\right )^{3/2} (b c-a d)^2} \]

[Out]

(d*(3*b*c + 2*a*d))/(6*a*c*(b*c - a*d)^2*(c + d*x^2)^(3/2)) + b/(2*a*(b*c - a*d)*(a + b*x^2)*(c + d*x^2)^(3/2)
) + (d*(b^2*c^2 + 6*a*b*c*d - 2*a^2*d^2))/(2*a*c^2*(b*c - a*d)^3*Sqrt[c + d*x^2]) - ArcTanh[Sqrt[c + d*x^2]/Sq
rt[c]]/(a^2*c^(5/2)) + (b^(5/2)*(2*b*c - 7*a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(2*a^2*(b*
c - a*d)^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.327889, antiderivative size = 225, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {446, 103, 152, 156, 63, 208} \[ \frac{d \left (-2 a^2 d^2+6 a b c d+b^2 c^2\right )}{2 a c^2 \sqrt{c+d x^2} (b c-a d)^3}+\frac{b^{5/2} (2 b c-7 a d) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{2 a^2 (b c-a d)^{7/2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a^2 c^{5/2}}+\frac{b}{2 a \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2} (b c-a d)}+\frac{d (2 a d+3 b c)}{6 a c \left (c+d x^2\right )^{3/2} (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(a + b*x^2)^2*(c + d*x^2)^(5/2)),x]

[Out]

(d*(3*b*c + 2*a*d))/(6*a*c*(b*c - a*d)^2*(c + d*x^2)^(3/2)) + b/(2*a*(b*c - a*d)*(a + b*x^2)*(c + d*x^2)^(3/2)
) + (d*(b^2*c^2 + 6*a*b*c*d - 2*a^2*d^2))/(2*a*c^2*(b*c - a*d)^3*Sqrt[c + d*x^2]) - ArcTanh[Sqrt[c + d*x^2]/Sq
rt[c]]/(a^2*c^(5/2)) + (b^(5/2)*(2*b*c - 7*a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(2*a^2*(b*
c - a*d)^(7/2))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x \left (a+b x^2\right )^2 \left (c+d x^2\right )^{5/2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{x (a+b x)^2 (c+d x)^{5/2}} \, dx,x,x^2\right )\\ &=\frac{b}{2 a (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}}+\frac{\operatorname{Subst}\left (\int \frac{b c-a d+\frac{5 b d x}{2}}{x (a+b x) (c+d x)^{5/2}} \, dx,x,x^2\right )}{2 a (b c-a d)}\\ &=\frac{d (3 b c+2 a d)}{6 a c (b c-a d)^2 \left (c+d x^2\right )^{3/2}}+\frac{b}{2 a (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}}-\frac{\operatorname{Subst}\left (\int \frac{-\frac{3}{2} (b c-a d)^2-\frac{3}{4} b d (3 b c+2 a d) x}{x (a+b x) (c+d x)^{3/2}} \, dx,x,x^2\right )}{3 a c (b c-a d)^2}\\ &=\frac{d (3 b c+2 a d)}{6 a c (b c-a d)^2 \left (c+d x^2\right )^{3/2}}+\frac{b}{2 a (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}}+\frac{d \left (b^2 c^2+6 a b c d-2 a^2 d^2\right )}{2 a c^2 (b c-a d)^3 \sqrt{c+d x^2}}+\frac{2 \operatorname{Subst}\left (\int \frac{\frac{3}{4} (b c-a d)^3+\frac{3}{8} b d \left (b^2 c^2+6 a b c d-2 a^2 d^2\right ) x}{x (a+b x) \sqrt{c+d x}} \, dx,x,x^2\right )}{3 a c^2 (b c-a d)^3}\\ &=\frac{d (3 b c+2 a d)}{6 a c (b c-a d)^2 \left (c+d x^2\right )^{3/2}}+\frac{b}{2 a (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}}+\frac{d \left (b^2 c^2+6 a b c d-2 a^2 d^2\right )}{2 a c^2 (b c-a d)^3 \sqrt{c+d x^2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{c+d x}} \, dx,x,x^2\right )}{2 a^2 c^2}-\frac{\left (b^3 (2 b c-7 a d)\right ) \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^2\right )}{4 a^2 (b c-a d)^3}\\ &=\frac{d (3 b c+2 a d)}{6 a c (b c-a d)^2 \left (c+d x^2\right )^{3/2}}+\frac{b}{2 a (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}}+\frac{d \left (b^2 c^2+6 a b c d-2 a^2 d^2\right )}{2 a c^2 (b c-a d)^3 \sqrt{c+d x^2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-\frac{c}{d}+\frac{x^2}{d}} \, dx,x,\sqrt{c+d x^2}\right )}{a^2 c^2 d}-\frac{\left (b^3 (2 b c-7 a d)\right ) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^2}\right )}{2 a^2 d (b c-a d)^3}\\ &=\frac{d (3 b c+2 a d)}{6 a c (b c-a d)^2 \left (c+d x^2\right )^{3/2}}+\frac{b}{2 a (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}}+\frac{d \left (b^2 c^2+6 a b c d-2 a^2 d^2\right )}{2 a c^2 (b c-a d)^3 \sqrt{c+d x^2}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a^2 c^{5/2}}+\frac{b^{5/2} (2 b c-7 a d) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{2 a^2 (b c-a d)^{7/2}}\\ \end{align*}

Mathematica [C]  time = 0.094317, size = 114, normalized size = 0.51 \[ \frac{-\frac{b (2 b c-7 a d) \, _2F_1\left (-\frac{3}{2},1;-\frac{1}{2};\frac{b \left (d x^2+c\right )}{b c-a d}\right )}{(b c-a d)^2}+\frac{3 a b}{\left (a+b x^2\right ) (b c-a d)}+\frac{2 \, _2F_1\left (-\frac{3}{2},1;-\frac{1}{2};\frac{d x^2}{c}+1\right )}{c}}{6 a^2 \left (c+d x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(a + b*x^2)^2*(c + d*x^2)^(5/2)),x]

[Out]

((3*a*b)/((b*c - a*d)*(a + b*x^2)) - (b*(2*b*c - 7*a*d)*Hypergeometric2F1[-3/2, 1, -1/2, (b*(c + d*x^2))/(b*c
- a*d)])/(b*c - a*d)^2 + (2*Hypergeometric2F1[-3/2, 1, -1/2, 1 + (d*x^2)/c])/c)/(6*a^2*(c + d*x^2)^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.015, size = 2837, normalized size = 12.6 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x^2+a)^2/(d*x^2+c)^(5/2),x)

[Out]

-2/3/(-a*b)^(1/2)/a*d/(a*d-b*c)*b/c^2/((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b
*c)/b)^(1/2)*x+2/3/(-a*b)^(1/2)/a*d/(a*d-b*c)*b/c^2/((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)
^(1/2))-(a*d-b*c)/b)^(1/2)*x+1/3/(-a*b)^(1/2)/a*d/(a*d-b*c)*b/c/((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(
x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)*x+1/2/a^2*b/(a*d-b*c)^2*(-a*b)^(1/2)/c/((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-
a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*x*d-1/3/(-a*b)^(1/2)/a*d/(a*d-b*c)*b/c/((x-1/b*(-a*b)^(1/
2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)*x+1/6/a^2/(a*d-b*c)*b/((x-1/b*(-a*b)^(1/2))
^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)-1/2/a^2*b^2/(a*d-b*c)^2/((x-1/b*(-a*b)^(1/2))^
2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+1/6/a^2/(a*d-b*c)*b/((x+1/b*(-a*b)^(1/2))^2*d-2
*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)-1/2/a^2*b^2/(a*d-b*c)^2/((x+1/b*(-a*b)^(1/2))^2*d-2*
d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+5/12/a*d/(a*d-b*c)^2*b/((x-1/b*(-a*b)^(1/2))^2*d+2*d*
(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)+5/12/(-a*b)^(1/2)*d^2*b/(a*d-b*c)^2/c/((x-1/b*(-a*b)^(1
/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)*x+5/6/(-a*b)^(1/2)*d^2*b/(a*d-b*c)^2/c^2/(
(x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*x-5/4/(-a*b)^(1/2)*d^2*b^2
/(a*d-b*c)^3/c/((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*x+1/3/a^2/
c/(d*x^2+c)^(3/2)+1/a^2/c^2/(d*x^2+c)^(1/2)-1/a^2/c^(5/2)*ln((2*c+2*c^(1/2)*(d*x^2+c)^(1/2))/x)-1/4/(-a*b)^(1/
2)/a/(a*d-b*c)*b/(x-1/b*(-a*b)^(1/2))/((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b
*c)/b)^(3/2)+5/4/a*d/(a*d-b*c)^3*b^2/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^
(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(
1/2))/(x-1/b*(-a*b)^(1/2)))+1/4/(-a*b)^(1/2)/a/(a*d-b*c)*b/(x+1/b*(-a*b)^(1/2))/((x+1/b*(-a*b)^(1/2))^2*d-2*d*
(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)+5/4/a*d/(a*d-b*c)^3*b^2/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*
d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(
1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))-5/4/a*d/(a*d-b*c)^3*b^2/((x-1/b*(-a*b)^(
1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+1/2/a^2*b^2/(a*d-b*c)^2/(-(a*d-b*c)/b)^(1
/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*
d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))-1/3/a^2*d*(-a*b)^(1/2)/(a*
d-b*c)/c^2/((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*x-5/12/(-a*b)^
(1/2)*d^2*b/(a*d-b*c)^2/c/((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)
*x-5/6/(-a*b)^(1/2)*d^2*b/(a*d-b*c)^2/c^2/((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a
*d-b*c)/b)^(1/2)*x+5/4/(-a*b)^(1/2)*d^2*b^2/(a*d-b*c)^3/c/((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*
(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*x+1/3/a^2*d*(-a*b)^(1/2)/(a*d-b*c)/c^2/((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(
1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*x+1/6/a^2*d*(-a*b)^(1/2)/(a*d-b*c)/c/((x+1/b*(-a*b)^(1/2))^2*d-
2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)*x-1/6/a^2*d*(-a*b)^(1/2)/(a*d-b*c)/c/((x-1/b*(-a*b)
^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)*x+1/2/a^2*b^2/(a*d-b*c)^2/(-(a*d-b*c)/b
)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2)
)^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))+5/12/a*d/(a*d-b*c)^2*b
/((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)-5/4/a*d/(a*d-b*c)^3*b^2/
((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)-1/2/a^2*b/(a*d-b*c)^2*(-a
*b)^(1/2)/c/((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*x*d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )}^{2}{\left (d x^{2} + c\right )}^{\frac{5}{2}} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^2/(d*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)^2*(d*x^2 + c)^(5/2)*x), x)

________________________________________________________________________________________

Fricas [B]  time = 47.739, size = 6770, normalized size = 30.09 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^2/(d*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

[1/24*(3*(2*a*b^3*c^6 - 7*a^2*b^2*c^5*d + (2*b^4*c^4*d^2 - 7*a*b^3*c^3*d^3)*x^6 + (4*b^4*c^5*d - 12*a*b^3*c^4*
d^2 - 7*a^2*b^2*c^3*d^3)*x^4 + (2*b^4*c^6 - 3*a*b^3*c^5*d - 14*a^2*b^2*c^4*d^2)*x^2)*sqrt(b/(b*c - a*d))*log((
b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*(4*b^2*c*d - 3*a*b*d^2)*x^2 + 4*(2*b^2*c^2 - 3*a*b*c*d + a^2
*d^2 + (b^2*c*d - a*b*d^2)*x^2)*sqrt(d*x^2 + c)*sqrt(b/(b*c - a*d)))/(b^2*x^4 + 2*a*b*x^2 + a^2)) + 12*(a*b^3*
c^5 - 3*a^2*b^2*c^4*d + 3*a^3*b*c^3*d^2 - a^4*c^2*d^3 + (b^4*c^3*d^2 - 3*a*b^3*c^2*d^3 + 3*a^2*b^2*c*d^4 - a^3
*b*d^5)*x^6 + (2*b^4*c^4*d - 5*a*b^3*c^3*d^2 + 3*a^2*b^2*c^2*d^3 + a^3*b*c*d^4 - a^4*d^5)*x^4 + (b^4*c^5 - a*b
^3*c^4*d - 3*a^2*b^2*c^3*d^2 + 5*a^3*b*c^2*d^3 - 2*a^4*c*d^4)*x^2)*sqrt(c)*log(-(d*x^2 - 2*sqrt(d*x^2 + c)*sqr
t(c) + 2*c)/x^2) + 4*(3*a*b^3*c^5 + 20*a^3*b*c^3*d^2 - 8*a^4*c^2*d^3 + 3*(a*b^3*c^3*d^2 + 6*a^2*b^2*c^2*d^3 -
2*a^3*b*c*d^4)*x^4 + 2*(3*a*b^3*c^4*d + 10*a^2*b^2*c^3*d^2 + 5*a^3*b*c^2*d^3 - 3*a^4*c*d^4)*x^2)*sqrt(d*x^2 +
c))/(a^3*b^3*c^8 - 3*a^4*b^2*c^7*d + 3*a^5*b*c^6*d^2 - a^6*c^5*d^3 + (a^2*b^4*c^6*d^2 - 3*a^3*b^3*c^5*d^3 + 3*
a^4*b^2*c^4*d^4 - a^5*b*c^3*d^5)*x^6 + (2*a^2*b^4*c^7*d - 5*a^3*b^3*c^6*d^2 + 3*a^4*b^2*c^5*d^3 + a^5*b*c^4*d^
4 - a^6*c^3*d^5)*x^4 + (a^2*b^4*c^8 - a^3*b^3*c^7*d - 3*a^4*b^2*c^6*d^2 + 5*a^5*b*c^5*d^3 - 2*a^6*c^4*d^4)*x^2
), 1/24*(24*(a*b^3*c^5 - 3*a^2*b^2*c^4*d + 3*a^3*b*c^3*d^2 - a^4*c^2*d^3 + (b^4*c^3*d^2 - 3*a*b^3*c^2*d^3 + 3*
a^2*b^2*c*d^4 - a^3*b*d^5)*x^6 + (2*b^4*c^4*d - 5*a*b^3*c^3*d^2 + 3*a^2*b^2*c^2*d^3 + a^3*b*c*d^4 - a^4*d^5)*x
^4 + (b^4*c^5 - a*b^3*c^4*d - 3*a^2*b^2*c^3*d^2 + 5*a^3*b*c^2*d^3 - 2*a^4*c*d^4)*x^2)*sqrt(-c)*arctan(sqrt(-c)
/sqrt(d*x^2 + c)) + 3*(2*a*b^3*c^6 - 7*a^2*b^2*c^5*d + (2*b^4*c^4*d^2 - 7*a*b^3*c^3*d^3)*x^6 + (4*b^4*c^5*d -
12*a*b^3*c^4*d^2 - 7*a^2*b^2*c^3*d^3)*x^4 + (2*b^4*c^6 - 3*a*b^3*c^5*d - 14*a^2*b^2*c^4*d^2)*x^2)*sqrt(b/(b*c
- a*d))*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*(4*b^2*c*d - 3*a*b*d^2)*x^2 + 4*(2*b^2*c^2 - 3*
a*b*c*d + a^2*d^2 + (b^2*c*d - a*b*d^2)*x^2)*sqrt(d*x^2 + c)*sqrt(b/(b*c - a*d)))/(b^2*x^4 + 2*a*b*x^2 + a^2))
 + 4*(3*a*b^3*c^5 + 20*a^3*b*c^3*d^2 - 8*a^4*c^2*d^3 + 3*(a*b^3*c^3*d^2 + 6*a^2*b^2*c^2*d^3 - 2*a^3*b*c*d^4)*x
^4 + 2*(3*a*b^3*c^4*d + 10*a^2*b^2*c^3*d^2 + 5*a^3*b*c^2*d^3 - 3*a^4*c*d^4)*x^2)*sqrt(d*x^2 + c))/(a^3*b^3*c^8
 - 3*a^4*b^2*c^7*d + 3*a^5*b*c^6*d^2 - a^6*c^5*d^3 + (a^2*b^4*c^6*d^2 - 3*a^3*b^3*c^5*d^3 + 3*a^4*b^2*c^4*d^4
- a^5*b*c^3*d^5)*x^6 + (2*a^2*b^4*c^7*d - 5*a^3*b^3*c^6*d^2 + 3*a^4*b^2*c^5*d^3 + a^5*b*c^4*d^4 - a^6*c^3*d^5)
*x^4 + (a^2*b^4*c^8 - a^3*b^3*c^7*d - 3*a^4*b^2*c^6*d^2 + 5*a^5*b*c^5*d^3 - 2*a^6*c^4*d^4)*x^2), -1/12*(3*(2*a
*b^3*c^6 - 7*a^2*b^2*c^5*d + (2*b^4*c^4*d^2 - 7*a*b^3*c^3*d^3)*x^6 + (4*b^4*c^5*d - 12*a*b^3*c^4*d^2 - 7*a^2*b
^2*c^3*d^3)*x^4 + (2*b^4*c^6 - 3*a*b^3*c^5*d - 14*a^2*b^2*c^4*d^2)*x^2)*sqrt(-b/(b*c - a*d))*arctan(1/2*(b*d*x
^2 + 2*b*c - a*d)*sqrt(d*x^2 + c)*sqrt(-b/(b*c - a*d))/(b*d*x^2 + b*c)) - 6*(a*b^3*c^5 - 3*a^2*b^2*c^4*d + 3*a
^3*b*c^3*d^2 - a^4*c^2*d^3 + (b^4*c^3*d^2 - 3*a*b^3*c^2*d^3 + 3*a^2*b^2*c*d^4 - a^3*b*d^5)*x^6 + (2*b^4*c^4*d
- 5*a*b^3*c^3*d^2 + 3*a^2*b^2*c^2*d^3 + a^3*b*c*d^4 - a^4*d^5)*x^4 + (b^4*c^5 - a*b^3*c^4*d - 3*a^2*b^2*c^3*d^
2 + 5*a^3*b*c^2*d^3 - 2*a^4*c*d^4)*x^2)*sqrt(c)*log(-(d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(c) + 2*c)/x^2) - 2*(3*a*b
^3*c^5 + 20*a^3*b*c^3*d^2 - 8*a^4*c^2*d^3 + 3*(a*b^3*c^3*d^2 + 6*a^2*b^2*c^2*d^3 - 2*a^3*b*c*d^4)*x^4 + 2*(3*a
*b^3*c^4*d + 10*a^2*b^2*c^3*d^2 + 5*a^3*b*c^2*d^3 - 3*a^4*c*d^4)*x^2)*sqrt(d*x^2 + c))/(a^3*b^3*c^8 - 3*a^4*b^
2*c^7*d + 3*a^5*b*c^6*d^2 - a^6*c^5*d^3 + (a^2*b^4*c^6*d^2 - 3*a^3*b^3*c^5*d^3 + 3*a^4*b^2*c^4*d^4 - a^5*b*c^3
*d^5)*x^6 + (2*a^2*b^4*c^7*d - 5*a^3*b^3*c^6*d^2 + 3*a^4*b^2*c^5*d^3 + a^5*b*c^4*d^4 - a^6*c^3*d^5)*x^4 + (a^2
*b^4*c^8 - a^3*b^3*c^7*d - 3*a^4*b^2*c^6*d^2 + 5*a^5*b*c^5*d^3 - 2*a^6*c^4*d^4)*x^2), -1/12*(3*(2*a*b^3*c^6 -
7*a^2*b^2*c^5*d + (2*b^4*c^4*d^2 - 7*a*b^3*c^3*d^3)*x^6 + (4*b^4*c^5*d - 12*a*b^3*c^4*d^2 - 7*a^2*b^2*c^3*d^3)
*x^4 + (2*b^4*c^6 - 3*a*b^3*c^5*d - 14*a^2*b^2*c^4*d^2)*x^2)*sqrt(-b/(b*c - a*d))*arctan(1/2*(b*d*x^2 + 2*b*c
- a*d)*sqrt(d*x^2 + c)*sqrt(-b/(b*c - a*d))/(b*d*x^2 + b*c)) - 12*(a*b^3*c^5 - 3*a^2*b^2*c^4*d + 3*a^3*b*c^3*d
^2 - a^4*c^2*d^3 + (b^4*c^3*d^2 - 3*a*b^3*c^2*d^3 + 3*a^2*b^2*c*d^4 - a^3*b*d^5)*x^6 + (2*b^4*c^4*d - 5*a*b^3*
c^3*d^2 + 3*a^2*b^2*c^2*d^3 + a^3*b*c*d^4 - a^4*d^5)*x^4 + (b^4*c^5 - a*b^3*c^4*d - 3*a^2*b^2*c^3*d^2 + 5*a^3*
b*c^2*d^3 - 2*a^4*c*d^4)*x^2)*sqrt(-c)*arctan(sqrt(-c)/sqrt(d*x^2 + c)) - 2*(3*a*b^3*c^5 + 20*a^3*b*c^3*d^2 -
8*a^4*c^2*d^3 + 3*(a*b^3*c^3*d^2 + 6*a^2*b^2*c^2*d^3 - 2*a^3*b*c*d^4)*x^4 + 2*(3*a*b^3*c^4*d + 10*a^2*b^2*c^3*
d^2 + 5*a^3*b*c^2*d^3 - 3*a^4*c*d^4)*x^2)*sqrt(d*x^2 + c))/(a^3*b^3*c^8 - 3*a^4*b^2*c^7*d + 3*a^5*b*c^6*d^2 -
a^6*c^5*d^3 + (a^2*b^4*c^6*d^2 - 3*a^3*b^3*c^5*d^3 + 3*a^4*b^2*c^4*d^4 - a^5*b*c^3*d^5)*x^6 + (2*a^2*b^4*c^7*d
 - 5*a^3*b^3*c^6*d^2 + 3*a^4*b^2*c^5*d^3 + a^5*b*c^4*d^4 - a^6*c^3*d^5)*x^4 + (a^2*b^4*c^8 - a^3*b^3*c^7*d - 3
*a^4*b^2*c^6*d^2 + 5*a^5*b*c^5*d^3 - 2*a^6*c^4*d^4)*x^2)]

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x**2+a)**2/(d*x**2+c)**(5/2),x)

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Giac [A]  time = 1.17279, size = 410, normalized size = 1.82 \begin{align*} \frac{1}{6} \,{\left (\frac{3 \, \sqrt{d x^{2} + c} b^{3}}{{\left (a b^{3} c^{3} d - 3 \, a^{2} b^{2} c^{2} d^{2} + 3 \, a^{3} b c d^{3} - a^{4} d^{4}\right )}{\left ({\left (d x^{2} + c\right )} b - b c + a d\right )}} - \frac{3 \,{\left (2 \, b^{4} c - 7 \, a b^{3} d\right )} \arctan \left (\frac{\sqrt{d x^{2} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{{\left (a^{2} b^{3} c^{3} d^{2} - 3 \, a^{3} b^{2} c^{2} d^{3} + 3 \, a^{4} b c d^{4} - a^{5} d^{5}\right )} \sqrt{-b^{2} c + a b d}} + \frac{2 \,{\left (9 \,{\left (d x^{2} + c\right )} b c + b c^{2} - 3 \,{\left (d x^{2} + c\right )} a d - a c d\right )}}{{\left (b^{3} c^{5} - 3 \, a b^{2} c^{4} d + 3 \, a^{2} b c^{3} d^{2} - a^{3} c^{2} d^{3}\right )}{\left (d x^{2} + c\right )}^{\frac{3}{2}}} + \frac{6 \, \arctan \left (\frac{\sqrt{d x^{2} + c}}{\sqrt{-c}}\right )}{a^{2} \sqrt{-c} c^{2} d^{2}}\right )} d^{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^2/(d*x^2+c)^(5/2),x, algorithm="giac")

[Out]

1/6*(3*sqrt(d*x^2 + c)*b^3/((a*b^3*c^3*d - 3*a^2*b^2*c^2*d^2 + 3*a^3*b*c*d^3 - a^4*d^4)*((d*x^2 + c)*b - b*c +
 a*d)) - 3*(2*b^4*c - 7*a*b^3*d)*arctan(sqrt(d*x^2 + c)*b/sqrt(-b^2*c + a*b*d))/((a^2*b^3*c^3*d^2 - 3*a^3*b^2*
c^2*d^3 + 3*a^4*b*c*d^4 - a^5*d^5)*sqrt(-b^2*c + a*b*d)) + 2*(9*(d*x^2 + c)*b*c + b*c^2 - 3*(d*x^2 + c)*a*d -
a*c*d)/((b^3*c^5 - 3*a*b^2*c^4*d + 3*a^2*b*c^3*d^2 - a^3*c^2*d^3)*(d*x^2 + c)^(3/2)) + 6*arctan(sqrt(d*x^2 + c
)/sqrt(-c))/(a^2*sqrt(-c)*c^2*d^2))*d^2